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Abstract

The problem of the free convection from a vertical heated plate in a porous medium is investigated numerically in the

present paper. The effect of the sinusoidal plate temperature oscillation on the free convection from the plate is studied

using the non-equilibrium model, i.e., porous solid matrix and saturated fluid are not necessary to be at same temper-

ature locally. Non-dimensionalization of the two-dimensional transient laminar boundary layer equations results in

three parameters: (1) H, heat transfer coefficient parameter, (2) Kr, thermal conductivity ratio parameter, and (3) k,
thermal diffusivity ratio. Two additional parameters arise from the plate temperature oscillation condition which are

the non-dimensional amplitude (e) and frequency (X). The fully implicit finite difference method is used to solve the

system of equations. The numerical results are presented for 0 6 H 6 10, 0 6 Kr 6 10, 0.001 6 k 6 10 with the plate

temperature oscillation parameters 0 6 X 6 10 and 0 6 e 6 0.5. The results show that the thermal conductivity ratio

parameter is the most important parameter. It is found also that increasing the amplitude and the frequency of the oscil-

lating surface temperature will decrease the free convection heat transfer from the plate for any values of the other

parameters.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The fundamental free convection along vertical/in-

clined heated/cooled plate has been studied extensively

for both pure fluids and porous media by various

authors. The laminar boundary layer approximation is

usually used in the analysis due to its wide of engineering
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applications. Representative studies in this area may be

found in the recent books by Nield and Bejan [1], Vafai

[2], Pop and Ingham [3] and Bejan and Kraus [4]. Most

authors considered the isothermal or stream wise tem-

perature variation of the plate. But in the industrial

applications, quite often the free convection is a time

dependent or periodic process. The practical free con-

vection problem with the periodic oscillation of the sur-

face temperature has been addressed by Das et al. [5].

They have used Laplace transform technique to solve

the simplified equations, and the results show that the

transient velocity profile and the penetration distance

decreases with increasing the frequency of the plate tem-

perature oscillation. Recently Saeid [6] has considered
ed.

mailto:n_h_saeid@yahoo.com


Nomenclature

A(Nu) amplitude of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
Cp specific heat (J kg�1 K�1)

g gravitational acceleration (m s�2)

h heat transfer coefficient between the solid

and fluid phases (W m�3 K�1)

H heat transfer coefficient parameter H = hL2/

(ukfRa)
k thermal conductivity (W m�1 K�1)

K permeability (m2)

Kr thermal conductivity ratio parameter

Kr = ukf/{(1 � u)ks}
L plate height (m)

Nu average Nusselt number

Nut temporal cyclic averaged value of

Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
Ra Darcy–Rayleigh number

t time (s)

T temperature (K)

u, v velocity components along and normal to

the plate respectively (ms�1)

U, V non-dimensional velocity components

x, y Cartesian coordinates along and normal to

the plate respectively (m)

X, Y non-dimensional Cartesian coordinates

Greek symbols

a thermal diffusivity (m2 s�1)

b coefficient of volume expansion (K�1)

e non-dimensional amplitude

m kinematic viscosity (m2 s�1)

q density (kg m�3)

h non-dimensional temperature

k thermal diffusivity ratio k = af/as
s non-dimensional time

u porosity

x frequency (s�1)

X non-dimensional frequency

Subscripts

f fluid

s solid

t total (fluid + solid)

w wall

1 ambient
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the same problem with relatively higher Grashof number

is considered (104 < Gr < 109) where the laminar bound-

ary layer theory is applicable to study the effect of peri-

odic plate temperature oscillation on the free convection

from vertical plate to pure viscous fluids (air and water).

The results show that increasing the amplitude and the

frequency of the oscillating surface temperature will de-

crease the free convection heat transfer from the plate to

both air and water. For the free convection in porous

media, various authors [7,8] considered the porous ma-

trix is in thermal equilibrium with the fluid, i.e., the tem-

perature of solid and fluid are assumed to be the same

within the representative control volume. Thermal equi-

librium is not valid when the heat is released in the solid

or in the fluid phase. For instance, in the case of com-

bustion in a porous matrix, the heat is released in the

combustible gases. The difference between temperatures

of the solid and gases can be quite substantial in the

flame region ([9]). In adsorption/desorption process or

in a catalyst converter, the heat is released mainly in

the solid matrix. Also, in high speed and/or high Darcy

flow applications, it is important to account for thermal

non-equilibrium effects ([10]). Furthermore, when the

length scale of the representative control volume is the

same order of the length of the system, then the thermal

equilibrium model prediction may be unacceptable

([11]). It is expected that, when there is a significant dif-
ference between advection and conduction mechanisms

in transferring heat, the deviation between solid and

fluid phase temperatures increases.

Schumann [12], suggested a simple two-equation

model to account for non-equilibrium condition for

incompressible forced flow in a porous medium. Vafai

and Sozen [10], extended the Schumann model to ac-

count for compressible flow taking into account of

Forchheimer term and conduction effects in the gas and

solid phases. Amiri and Vafai [13] presented a detail anal-

ysis for forced flow through channel filled with saturated

medium. They considered the effects of porosity varia-

tion, boundary effects, inertial effects and non-equilib-

rium condition. Their results indicate that the Darcy

and particle Reynolds parameters are most influential

parameters in determining the validity of the local ther-

mal equilibrium. Recently the non-equilibrium model

has been used in the analysis of different convection heat

transfer problems in porous media by various authors

[14–25]. In the non-equilibrium modeling, it is required

to know the volumetric heat transfer coefficient between

solid and fluid phases. In the literature there are some at-

tempts to measure volumetric heat transfer coefficient

indirectly under forced convection conditions ([26,27]).

These methods are based on the thermal response of

the system to thermal pulses or by measuring the tran-

sient response of the system and use of a non-linear least
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square method to match the prediction of the governing

equations and experimental data (inverse problem). Wu

and Hwang [28], published experimental data for heat

transfer between air and solid particles in a porous bed.

The correlated results showed that the local Nusselt

parameter is a function of the Reynolds parameter and

the bed porosity. The local Nusselt parameter (based

on the particle diameter and thermal conductivity of

the fluid) can be as low as 1.0 for highly porous layer

and for Re on the order of 1000. For bed of porosity of

0.37–0.38 and for Re of 40–1000, the local Nusselt is be-

tween 10 and 100. In fact, the results depend on the accu-

racy of the model assumptions and accuracy of the input

parameters, such as thermophysical properties of the

solid matrix, effective thermal conductivity, boundary

conditions and effect of radiation, etc. No experimental

or theoretical analysis could be identified in the literature

about volumetric heat transfer coefficient under natural

convection conditions. From the basics of heat transfer,

it is expected that the volumetric heat transfer coefficient

for natural convection may be quite low compared with

forced convection, unless the Rayleigh parameter is very

high (Ra > Re2). Mohamad [29] has analyzed the free

convection from a vertical heated plate in a saturated

porous medium using Darcy model and the non-equilib-

rium model. The predicted results are interesting and

indicate that the equilibrium model is difficult to justify

when the solid matrix thermal conductivity is higher than

the thermal conductivity of fluid phase. In the present

work, the Darcy model and the non-equilibrium model

are used also to study the free convection from a vertical

plate immersed in a porous media driven by sinusoidal

plate temperature oscillation.
2. Governing equations

The conservation equations for mass, momentum

and energy in two-dimensional, laminar boundary layer

flow along vertical plate immersed in a porous media,

using the non-equilibrium model are

ou
ox

þ ov
oy

¼ 0 ð1Þ

ou
oy

¼ gbK
m

oT f

oy
ð2Þ

u qcp
� �

f

oT f

ot
þ qcp
� �

f
u
oT f

ox
þ v

oT f

oy

� �

¼ ukf
o2T f

oy2
þ h T s � T fð Þ ð3Þ

1� uð Þ qcp
� �

s

oT s

ot
¼ 1� uð Þks

o2T s

oy2
þ h T f � T sð Þ ð4Þ

where the vertical wall is considered to be along x-axis

and y-axis is normal to it. In accordance with the present

problem, the initial and boundary conditions are
u x; y; 0ð Þ ¼ v x; y; 0ð Þ ¼ 0; T f x; y; 0ð Þ ¼ T s x; y; 0ð Þ ¼ T1

ð5aÞ
u 0; y; tð Þ ¼ v 0; y; tð Þ ¼ 0; T f 0; y; tð Þ ¼ T s 0; y; tð Þ ¼ T1

ð5bÞ
v x; 0; tð Þ ¼ 0; T f x; 0; tð Þ ¼ T s x; 0; tð Þ ¼ T w tð Þ ð5cÞ
u x;1; tð Þ ¼ 0; T f x;1; tð Þ ¼ T s x;1; tð Þ ¼ T1 ð5dÞ

The wall temperature condition is assumed to oscillate

periodically over an average value T w with small ampli-

tude e and frequency x so that the boundary layer theory

is still valid. Therefore the following wall temperature

condition is used:

T w tð Þ ¼ T w þ e T w � T1
� �

sinxt ð6Þ

It is assumed that the fluid and solid phases have the

same temperature at the vertical plate, i.e., equilibrium

condition is imposed on the non-permeable plate. In

fact, this boundary condition is not valid, due to the

channeling effect. In the present work, the issue of

non-equilibrium boundary condition is not considered

due to lack of information.

In order to simplify the problem and to generalize the

results for the laminar boundary layer flow along a ver-

tical plate, the above equations are written in a non-

dimensional form by employing the following boundary

layer dimensionless variables:

s ¼ taf
L2

Ra; X ¼ x
L
; Y ¼ y

L

ffiffiffiffiffiffi
Ra

p
;

X ¼ xL2

afRa
; U ¼ uL

uafRa
; V ¼ vL

uaf
ffiffiffiffiffiffi
Ra

p ;

hf ¼
T f � T1

DT
; hs ¼

T s � T1

DT
ð7Þ

where DT ¼ T w � T1 and Ra is the Darcy–Rayleigh

number defined as Ra ¼ gbDTLK
umaf

. The non-dimensional

forms of the governing Eqs. (1)–(4) are

oU
oX

þ oV
oY

¼ 0 ð8Þ

U ¼ hf ð9Þ
ohf
os

þ U
ohf
oX

þ V
ohf
oY

¼ o2hf
oY 2

þ H hs � hfð Þ ð10Þ

k
ohs
os

¼ o2hs
oY 2

þ KrH hf � hsð Þ ð11Þ

where the parameters arises in the non-dimensionaliza-

tion are defined as

k ¼ af
as
; Kr ¼

ukf
1� uð Þks

; H ¼ hL2

ukfRa
ð12Þ

The initial and boundary conditions Eq. (5) become:

U X ;Y ;0ð Þ ¼U X ;Y ;0ð Þ ¼ 0; hf X ;Y ;0ð Þ ¼ hs X ;Y ;0ð Þ ¼ 0

ð13aÞ
U 0;Y ;sð Þ ¼ 0; hf 0;Y ;sð Þ ¼ hs 0;Y ;sð Þ ¼ 0 ð13bÞ
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V X ;0;sð Þ ¼ 0; hf X ;0;sð Þ ¼ hs X ;0;sð Þ ¼ 1þ esin Xsð Þ
ð13cÞ

U X ;1;sð Þ ¼ 0; hf X ;1;sð Þ ¼ hs X ;1;sð Þ ¼ 0 ð13dÞ

It is of practical importance to determine the average

total heat transfer (by fluid and solid) per unit area

from the vertical plate, which can be calculated as

�qt ¼
1

L

Z L

0

qt xð Þdx ¼ �1

L

Z L

0

ukf
oT f

oy

� �
y¼0

(

þ 1� uð Þks
oT s

oy

� �
y¼0

)
dx ð14Þ

From which it can be shown that, the time dependent

total average Nusselt number is

Nut sð Þffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p ¼ �1

hw sð Þ½ �3=2 Kr þ 1ð Þ

�
Z 1

0

Kr

ohf
oY

� �
Y¼0

þ ohs
oY

� �
Y¼0

� �
dX ð15Þ

where Nut sð Þ ¼ �h sð ÞL=keff is the time dependent average

Nusselt number based on the time dependent average

heat transfer coefficient and the effective thermal con-

ductivity (keff = ukf + (1 � u)ks), and Ra(s) = gb{Tw(t) �
T1}LK/(umaf) is the time dependent Rayleigh number.

It is assumed that hw(s) 5 0 where the present problem

arises. It can be shown that the time dependent average

Nusselt number for the fluid and solid phases are

Nuf sð Þffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p ¼ �1

hw sð Þ½ �3=2
Z 1

0

ohf
oY

� �
Y¼0

dX ð16aÞ

Nus sð Þffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p ¼ �1

hw sð Þ½ �3=2
Z 1

0

ohs
oY

� �
Y¼0

dX ð16bÞ

It is can be seen from Eqs. (10), (15) and (16) that, when

H! 0 and Kr !1; leads to the equilibrium model. The

thermal equilibrium model solution can be recovered

also when the heat transfer coefficient parameter

H! 1 which leads to same temperatures of the solid

and fluid in the boundary layer.
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Fig. 1. Steady-state temperature profiles at X = 1, e = 0.
3. Numerical scheme

The energy equations (10) and (11) are integrated

over a control volume using the fully implicit scheme

which is unconditionally stable. The power-law scheme

is used for the convection-diffusion formulation [30]. Fi-

nally, the finite-difference equation corresponding to the

continuity Eq. (8) is developed using the expansion point

iþ 1; j� 1
2

� �
, where i and j are the indices along X and

Y respectively [31]. The resulting finite-difference equa-

tion is
V iþ1;j ¼ V iþ1;j�1

� DY w

2 DXnð Þ Uiþ1;j þ Uiþ1;j�1 � Ui;j � Ui;j�1

� �
ð17Þ

where DYw and DXn are the grid spaces west and north

of the (i, j) point respectively. The solution domain,

therefore, consists of grid points at which the discretiza-

tion equations are applied. In this domain X by defini-

tion varies from 0 to 1. But the choice of the value of

Y, corresponding to Y = 1, has an important influence

on the solution. In the present study the value of Y cor-

responding to Y = 1 is taken Y = 14 following Jang and

Ni [8]. Further larger values of Y produced the results

with indistinguishable difference. The stretched grid

has been selected in both X and Y direction such that

the grid points clustered near the wall and near the lead-

ing edge of the flat plate as there are steep variation of

the velocities and temperatures in these regions.

The algorithm needs iteration for the coupled Eqs.

(8)–(11). The convergence condition used for the depen-

dent variables hf, hs, U, and V is

Max
Un � Un�1

Un

����
���� < 10�5 ð18Þ

where U is the general dependent variable and the super-

script n represents the iteration step number. The time

increment Ds = 0.001 is used for the isothermal wall

case, and Ds = 2p/(1000X) is used for the oscillation sur-

face temperature case and even smaller in some case of

small values of the non-dimensional frequency.

The steady-state temperature profile of the fluid and

solid phases are shown in Fig. 1 for the H = 0 and

Kr = 1000 and the case H = 1000 and Kr = 1000 which

represent the equilibrium model for the isothermal plate

(e = 0). The results of the equilibrium model found by

Jang and Ni [8] are presented in Fig. 1 for comparison.
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Good agreement can be observed between the present

results and the numerical results of Jang and Ni [8].

The steady-state value of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
¼ Nuf sð Þ=ffiffiffiffiffiffiffiffiffiffiffiffi

Ra sð Þ
p

¼ Nus sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
¼ 0.888 is found when H =

1000 and Kr = 1000 with k = 1.0. While Nut sð Þ=ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
¼ 0.884 is found when H = 0 and Kr = 1000

with k = 1.0. The exact value of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
¼

0.888 is found according to the similarity solution of

the equilibrium model in the free convection boundary

layer flow along isothermal plate embedded in a porous

medium [7]. Moreover the steady-state value of the local

Nu=
ffiffiffiffiffiffi
Ra

p
is found as 0.446 at the upper end of the plate

(X = 1) comparing with the value of 0.444 obtained from

the similarity solution [7]. The difference between the

present results and the similarity solution [7] for both

the local and average value of the Nusselt number is less

than 0.5%. The above results provided confidence to the

accuracy of the numerical algorithm used for the present

problem in comparison with the equilibrium model.
4. Results and discussion

The transient variation of Nuf sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
, Nus sð Þ=ffiffiffiffiffiffiffiffiffiffiffiffi

Ra sð Þ
p

and Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
for the isothermally

suddenly heated plate (e = 0) are shown in Fig. 2 for

three different cases. (H = 0, Kr = 1000), (H = 1000,

Kr = 1000) and (H = Kr = 1). The results show that,

when H = 0 and Kr = 1000, the transient variation of

the average Nusselt number for the fluid is exactly same

as the total average Nusselt number with the steady-

state value of 0.884 but the average Nusselt number

for the solid is lower. The thermal equilibrium solution

is obtained for high H and high value of Kr. The tran-

sient variation of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
, Nuf sð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
and

Nus sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
are forming the continues upper curve

in Fig. 2 when (H = 1000, Kr = 1000). While for the case

when H = 1 and Kr = 1, the values of average Nusselt
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0
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τ

Fig. 2. Transient variation of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
, Nuf sð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
and Nus sð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
for the thermally equilibrium and non-

equilibrium cases.
number for the fluid and the total average Nusselt num-

ber are reduced and the values of average Nusselt num-

ber for the solid are increased. The total average Nusselt

number values are exactly in between the values of the

average Nusselt number for the fluid and for the solid

according to Eqs. (15) and (16).

The variation of the steady-state Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
with

the thermal conductivity ratio parameter Kr in the range

(Kr = 0–10) for different values of the heat transfer coef-

ficient parameter H and fixed value of the thermal diffu-

sivity ratio k = 1 is shown in Fig. 3 for the isothermal

plate (e = 0). It is observed that the steady-state value

of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
increases with the increase of the ther-

mal conductivity ratio parameter Kr. It can be predicted

from Fig. 3 that the steady-state of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
will

approach 0.888 (equilibrium model solution) when Kr

goes to infinity. Fig. 3 shows also that the thermal con-

ductivity ratio parameter Kr has a significant effect on

the average total Nusselt number, while the effect of

the heat transfer coefficient parameter H is approxi-

mately insignificant in the case of the isothermal plate

and there is no significant difference even for very small

values of H (0 or 0.1). Therefore, the present study will

focus on the effect of the sinusoidal temperature oscilla-

tion of the plate embedded in a porous medium for dif-

ferent value of the thermal conductivity ratio parameter

Kr with fixed values of H = 1.

In this case the free convection process starts when

the vertical plate temperature increases suddenly from

the ambient temperature T1 to the average plate tem-

perature T w. At this time the average Nusselt number

goes to infinity. Then when the vertical plate tempera-

ture is oscillating, the temperature of the both phases

at Y = 0 is oscillating and the total average Nusselt num-

ber will oscillates accordingly as a result of the oscilla-

tion of the solid and fluid average Nusselt number. It

is found that the oscillation of the solid average Nusselt

number is always with smaller values than that of the

fluid phase. For very high values of the thermal conduc-

tivity ratio parameter (Kr = 103) the oscillation of the
0 2 4 7 9 100.25

0.35

0.45
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u t
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H = 1.0
H = 0.1
H = 0

Kr 

1 3 5 6 8

Fig. 3. Variation of the steady-state Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
with the

thermal conductivity ratio parameter Kr for different values of

H with k = 1 and e = 0.
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total average Nusselt number will be same as that for the

fluid phase, while for very small values of the thermal

conductivity ratio parameter (Kr = 10�3) the oscillation

of the total average Nusselt number will be same as that

for the solid phase. Fig. 4 shows the oscillation of the

plate temperature with an amplitude of e = 0.1 and fre-

quency of X = 1 and the effect of the plate temperature

oscillation on the average Nusselt number. It can be ob-

served that the oscillation of the average Nusselt num-

bers is slightly out of phase with the plate temperature

oscillation for this case. It can be predicted that the

phase difference between the oscillation of the average

Nusselt numbers and the plate temperature oscillation

is higher for higher frequency.

The oscillation of the total average Nusselt number

becomes periodic oscillation after some periods. The last

two oscillating periods in Fig. 4 are almost similar,

which means that the oscillation of the total average

Nusselt number becomes periodic oscillation.

The steady periodic oscillation of the total average

Nusselt number is achieved when the amplitude and

the cyclic averaged value of the total average Nusselt

number become constant for different periods. There-

fore, the following condition is considered for the steady

periodic oscillation of the total average Nusselt number:

A Nut
� �p � A Nut

� �p�1

A Nut
� �p 6 10�3 and

Nut
p
�Nut

p�1

Nut
p 6 10�3

ð19Þ

where the superscript p is the period number, and

A Nut
� �

¼ 1

2
Max

Nut sð Þffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
 !

�Min
Nut sð Þffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
 !" #

ð20aÞ
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(τ)
(τ)Ra

Nus
;  ----
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Fig. 4. Oscillation of (a) plate temperature (b) average Nusselt

number. e = 0.1; X = 1; with Kr = 1, H = 1 and k = 1.
for s0 6 s 6 [s0 + (2p/X)] and

Nut ¼
1

2p=Xð Þ

Z s0þ 2p=Xð Þ

s0

Nut sð Þffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
 !

ds ð20bÞ

Fig. 5 shows the variation of the temporal cyclic aver-

aged values of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
defined in Eq. (20b) and

designed as Nut with the non-dimensional frequency X,
at different amplitudes of the surface temperature oscil-

lation (e). Two different cases are presented in Fig. 5

which are same as those in Fig. 2 for the non-oscillation

plate temperature, namely (Kr = 1000; H = 0) and

(Kr = 1; H = 1). For both cases the value of Nut is

decreasing with the increase of either the non-dimen-

sional frequency or the amplitude of the plate tempera-

ture oscillation.

The effect of the thermal conductivity ratio parame-

ter (Kr) on Nut is shown in Fig. 6 when the plate temper-

ature oscillates at different amplitudes and constant

non-dimensional frequency of X = 5 and k = 1. Once

again for all the values ofKr the values of Nut are decreas-
ing with the increase of the amplitude of the plate temper-

ature oscillation. Increasing the thermal conductivity

ratio parameter (Kr) will enhance the free convective
1 3 5 7 9 100.1

0.2

Ω
2 4 6 8

Fig. 5. Variation of Nut with the non-dimensional frequency at

the periodic state. k = 1.
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Fig. 6. Variation of Nut at the periodic state with the thermal

conductivity ratio parameter. H = 1, k = 1 and X = 5.
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heat transfer for the non-oscillating and oscillating plate

temperature and increase the values of Nut as expected

and shown in Fig. 6.

All the above results are presented for the case of

equal thermal diffusivity for the fluid phase and the solid

phase i.e., k = 1. In the practice this ratio can be more or

less than unity and it is important to consider the effect

of this parameter for the present unsteady free convec-

tion problem. Amiri and Vafai [14] have considered val-

ues of k < 1 for the transient analysis of incompressible

flow through a packed bed. In the present work the effect

of k is studied for values less than and more than unity

as shown in Fig. 7. The variation of Nut with the thermal

conductivity ratio parameter (Kr) when k = 1 is chosen

to be as a reference for the case when the plate temper-

ature oscillates with e = 0.3 and X = 5. For all the values

of Kr presented in Fig. 7, the values of Nut increase with
the decrease of the thermal diffusivity parameter (k).

It is observed that when the plate temperature oscil-

lates at high amplitude and high frequency the values

of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
becomes negative for some

instances of the oscillation period. Negative values of

Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
are observed for the cases of high values

of the thermal diffusivity ratio (k) and small values of the

thermal conductivity ratio parameter (Kr). The oscilla-

tion of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
with time for the last period when

the conditions (19) are satisfied is shown in Fig. 8 for dif-

ferent values of the amplitude of the plate temperature

oscillation. It can be seen from Fig. 8 that for non-

dimensional frequency of 5, when the amplitude of the

plate temperature oscillation e P 0.3, negative values

are obtained for the particular parameter values of

Kr = 1,H = 1, and k = 1. As discussed above smaller val-

ues of Kr gives smaller values of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
and

higher values of k or X results in smaller values of

Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
also.

Negative values of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
means that there is

no enough time to transfer the heat from the plate to the

ambient medium and there will be some point in the

boundary layer with fluid and/or solid temperature higher
1 2 5 7 9 10
0.3

0.4

0.5
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u
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Fig. 7. Effect of the thermal diffusivity ratio k on the variation

of Nut at the periodic state with the thermal conductivity ratio

parameter. For H = 1, e = 0.3 and X = 5.
than the surface temperature from which heat will trans-

fer partly to the wall, or some of the heat gained by the

porous media in early stages will return back to it when

its temperature drops.

A detailed investigation has been carried out to dem-

onstrate this explanation when negative heat transfer

happened. The period of the last cycle of the oscillation

of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
is divided in to eight time steps (a)–(h)

as shown in Fig. 8. At each time step the temperature

profiles at the upper end of the plate (X = 1) are shown

in Figs. 9 and 10 for fluid and solid phase respectively

for e = 0.5. It can be seen from Figs. 9 and 10 that the

surface temperature is equal at the points (a, c), (d,h)

and (e,g) but the temperature gradients are these points

different which gives different values of the Nusselt num-

ber. The maximum value of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
occurs near

point (h) when the surface temperature increases

from its minimum value to its average value as shown

in Fig. 8. At point (h) the temperature profiles for

both fluid and solid phases show maximum negative
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0.5
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f
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Y 
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Fig. 9. Periodic state fluid temperature profiles at different time

steps (a–h in Fig. 8) for last cycle, e = 0.5 and X = 5 for Kr = 1,

H = 1, and k = 1.
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Fig. 10. Periodic state solid temperature profiles at different

time steps (a–h in Fig. 8) for last cycle, e = 0.5 and X = 5 for

Kr = 1, H = 1, and k = 1.
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temperature gradient at the plate (Y = 0) which leads to

the maximum value of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
. The minimum

value of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
is negative and it occurs be-

tween points (e) and (f) when the surface temperature

goes to its minimum value. The reason is that at points

(e) and (f) the temperature profiles for both fluid and

solid phases show maximum temperature gradient but

in this case positive at Y = 0 which leads to the negative

value of Nut sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra sð Þ

p
.

5. Conclusions

In this paper, the effect of the periodic oscillation of

the surface temperature on the periodic free convection

from a vertical heated plate in a porous medium is inves-

tigated numerically. The non-equilibrium model is used

in the present investigation, i.e., porous solid matrix

and saturated fluid are not necessary to be at same tem-

perature locally. The non-dimensional form of the two-

dimensional transient laminar boundary layer equations

are solved numerically using the fully implicit scheme.

The results are effect by three parameters: (1) H, heat

transfer coefficient parameter, (2) Kr, thermal conductiv-

ity ratio parameter, and (3) k, thermal diffusivity ratio.

Two additional parameters arise from the plate temper-

ature oscillation which are the non-dimensional ampli-

tude (e) and frequency (X) of the plate temperature

oscillation. The numerical results are presented for

0 6 H 6 10, 0 6 Kr 6 10, 0.001 6 k 6 10 with the plate

temperature oscillation parameters 0 6 X 6 10 and

0 6 e 6 0.5. The results show that the effect of the ther-

mal conductivity ratio parameter is more important

than the heat transfer coefficient parameter and the ther-

mal diffusivity ratio. Increasing the thermal conductivity
ratio parameter leads to increasing the average Nusselt

number. It is found also that increasing the amplitude

and the frequency of the oscillating surface temperature

will decrease the free convection heat transfer from the

plate for any values of the other parameters. It is ob-

served that when the plate temperature oscillates at high

amplitude and high frequency the values of the average

Nusselt number becomes negative for some instances of

the oscillation period. Negative values of the average

Nusselt number are observed for the cases of high values

of the thermal diffusivity ratio (k) and small values of the

thermal conductivity ratio parameter (Kr). Negative val-

ues of the average Nusselt number means that there will

be some point in the boundary layer with fluid and/or

solid temperature higher than the surface temperature

from which heat will transfer partly to the wall, or some

of the heat gained by the porous media in early stages

will return back to it when its temperature drops.
References

[1] D.A. Nield, A. Bejan, Convection in Porous Media,

second ed., Springer, New York, 1999.

[2] K. Vafai (Ed.), Handbook of Porous Media, Marcel

Dekker, New York, 2000.

[3] I. Pop, D.B. Ingham, Convective Heat Transfer: Mathe-

matical and Computational Modelling of Viscous Fluids

and Porous Media, Pergamon, Oxford, 2001.

[4] A. Bejan, A.D. Kraus (Eds.), Heat Transfer Handbook,

Wiley, New York, 2003.

[5] U.N. Das, R.K. Deka, V.M. Soundalgekar, Transient free

convection flow past an infinite vertical plate with periodic

temperature variation, ASME J. Heat Transfer 121 (1999)

1091–1094.

[6] N.H. Saeid, Periodic free convection from vertical plate

subjected to periodic surface temperature oscillation, Int. J.

Therm. Sci. 43 (2004) 569–574.

[7] P. Cheng, W.J. Minkowycz, Free convection about a

vertical flat plate embedded in a porous medium with

application to heat transfer from a dike, J. Geophys. Res.

82 (1977) 2040–2044.

[8] J.Y Jang, J.R. Ni, Transient free convection with mass

transfer from an isothermal vertical flat plate embedded in

a porous medium, Int. J. Heat Fluid Flow 10 (1989) 59–65.

[9] A.A. Mohamad, S. Ramadhyani, R. Viskanta, Modelling

of combustion and heat transfer in a packed bed with

embedded coolant tubes, Int. J. Heat Mass Transfer 37

(1994) 1181–1197.

[10] K. Vafai, M. Sozen, Analysis of energy and momentum

transport for fluid flow through a porous bed, ASME J.

Heat Transfer 112 (1990) 690–699.

[11] M. Kaviany, Principles of Heat Transfer in Porous Media,

second ed., Springer, New York, 1999.

[12] T.E.W. Schumann, Heat transfer: a liquid flowing through

a porous prism, J. Franklin Inst. 208 (1929) 405–416.

[13] A. Amiri, K. Vafai, Analysis of dispersion effects and non-

thermal equilibrium, non-Darcian, variable porosity

incompressible flow through porous media, Int. J. Heat

Mass Transfer 37 (1994) 939–954.



N.H. Saeid, A.A. Mohamad / International Journal of Heat and Mass Transfer 48 (2005) 3855–3863 3863
[14] A. Amiri, K. Vafai, Transient analysis of incompressible

flow through a packed bed, Int. J. Heat Mass Transfer 41

(1998) 4259–4279.

[15] D.A.S. Rees, I. Pop, Free convective stagnation-point flow

in a porous medium using a thermal nonequilibrium

model, Int. Commun. Heat Mass Transfer 26 (1999) 945–

954.

[16] W.J. Minkowycz, A. Haji-Sheikh, K. Vafai, On departure

from local thermal equilibrium in porous media due to a

rapidly changing heat source: the Sparrow number, Int. J.

Heat Mass Transfer 42 (1999) 3373–3385.

[17] A.A. Mohamad, Nonequilibrium natural convection in a

differentially heated cavity filled with a saturated porous

media, ASME J. Heat Transfer 122 (2000) 380–384.

[18] A. Nakayama, F. Kuwahara, M. Sugiyama, G. Xu, A

two-energy equation for conduction and convection in

porous media, Int. J. Heat Mass Transfer 44 (2001) 4375–

4379.

[19] P.X. Jiang, Z.P. Ren, Numerical investigation of forced

convection heat transfer in porous media using a thermal

non-equilibrium model, Int. J. Heat Fluid Flow 22 (2001)

102–110.

[20] A. Marafie, K. Vafai, Analysis of non-Darcian effects on

temperature differentials in porous media, Int. J. Heat

Mass Transfer 44 (2001) 4401–4411.

[21] S.J. Kim, S.P. Jang, Effect of the Darcy number, the

Prandtl number, and the Reynolds number on local

thermal non-equilibrium, Int. J. Heat Mass Transfer 45

(2002) 3885–3896.

[22] B. Alazmi, K. Vafai, Constant wall heat flux boundary

conditions in porous media under local thermal non-
equilibrium conditions, Int. J. Heat Mass Transfer 45

(2002) 3071–3087.

[23] D.A. Nield, A note on the modeling of local thermal non-

equilibrium in a saturated porous medium, Int. J. Heat

Mass Transfer 45 (2002) 4367–4368.

[24] N. Banu, D.A.S. Rees, Onset of Darcy–Benard convection

using a thermal non-equilibrium model, Int. J. Heat Mass

Transfer 45 (2002) 2221–2228.

[25] A.C. Baytas, I. Pop, Free convection in a square porous

cavity using a thermal non-equilibrium model, Int. J.

Therm. Sci. 41 (2002) 861–870.

[26] L.B. Younis, R. Viskanta, Experimental determination of

the volumetric heat transfer coefficient between stream of

air and ceramic foam, Int. J. Heat Mass Transfer 36 (1993)

1425–1434.

[27] B.M. Galitseisky, A.L. Loshkin, Unsteady method of

experimental investigation of heat transfer in porous

material, in: J. Padet, F. Arinc, (Eds.), Int. Symp. On

Transient Convective Heat Transfer, 1997, pp. 201–

214.

[28] C.C. Wu, G.J. Hwang, Flow and heat transfer character-

istics inside packed and fluidized beds, ASME J. Heat

Transfer 120 (1998) 667–673.

[29] A.A. Mohamad, Natural convection from a vertical plate

in a saturated porous medium, non-equilibrium theory,

J. Porous Media 4 (2001) 181–186.

[30] S.V. Patankar, Numerical Heat Transfer and Fluid Flow,

McGraw-Hill, New York, 1980.

[31] D.A. Anderson, J.C. Tannehill, R.H. Pletcher, Computa-

tional Fluid Mechanics and Heat Transfer, McGraw-Hill,

New York, 1984.


	Periodic free convection from a vertical plate in a saturated porous medium, non-equilibrium model
	Introduction
	Governing equations
	Numerical scheme
	Results and discussion
	Conclusions
	References


